Study of China's Optimal Concentrated Solar Power Development Path to 2050

Updated:2021-11-18 16:05 Source:en.www.9966622.com

C(t)=C0×n(t)−α×eμt,(1)

PR=2−α,(2)
LR=1−2−α.(3)

dN(t)/dt=F(t)[m−N(t)],(4)

N(t)´=[p+qmN(t)][m−N(t)].(5)

TC(S(t),x(t))=C(t)×x(t)+(V−M×L)×n(t)×T,(6)

S(t)+n(t)=180.(7)

r(t)=15∑22i=18x(t−i).(8)

S(t+1)=S(t)−x(t)+r(t).(9)

Therefore, the dynamic programming model of China’s CSP development under the minimum cost

{ft(S(t))=minx(t)∈g(S(t)){TC(S(t),x(t))+11+rft+1(S(t+1))}f2051(S(2051))=0,t=2050,…,2020.(10)

n(t)≤N(t),(11)
C(t)×x(t)+(V−M×L)×n(t)×T≤GDPt×u,(12)
(n(t)+x(t)2)×T≤(n(t−1)+x(t−1)2)×T×(1+g),(13)
C(t)=C0×n(t)−α×eμt ,(14)
n(t+1)=n(t)+x(t)−r(t),(15)
x(t)≥0t=2020,…,2050.(16)

TABLE 2
TABLE 2. Parameter estimation of the learning curve model and innovation diffusion model.
https://www.frontiersin.org/files/Articles/724021/fenrg-09-724021-HTML-r1/image_m/fenrg-09-724021-t002.jpg
FIGURE 3. Unit investment cost changes under different learning rates.
https://www.frontiersin.org/files/Articles/724021/fenrg-09-724021-HTML-r1/image_m/fenrg-09-724021-g003.jpg

Grid Absorptive Capacity

  • Management School, Tianjin Normal University, Tianjin, China

Hot list

Recommended

Baidu
map